剧情介绍
本片从证明了费玛最后定理的安德鲁?怀尔斯 Andrew Wiles开始谈起,描述了 Fermat's Last Theorm 的历史始末,往前回溯来看,1994年正是我在念大学的时候,当时完全没有一位教授在课堂上提到这件事,也许他们认为,一位真正的研究者,自然而然地会被数学吸引,然而对一位不是天才的学生来说,他需要的是老师的指引,引导他走向更高深的专业认知,而指引的道路,就在科普的精神上。
从费玛最后定理的历史中可以发现,有许多研究成果,都是研究人员燃烧热情,试图提出「有趣」的命题,然后再尝试用逻辑验证。
费玛最后定理:xn+yn=zn 当 n>2 时,不存在整数解
1. 1963年 安德鲁?怀尔斯 Andrew Wiles被埃里克?坦普尔?贝尔 Eric Temple Bell 的一本书吸引,「最后问题 The Last Problem」,故事从这里开始。
2. 毕达哥拉斯 Pythagoras 定理,任一个直角三角形,斜边的平方=另外两边的平方和
x2+y2=z2
毕达哥拉斯三元组:毕氏定理的整数解
3. 费玛 Fermat 在研究丢番图 Diophantus 的「算数」第2卷的问题8时,在页边写下了註记
「不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;或者,总的来说,不可能将一个高於2次幂,写成两个同样次幂的和。」
「对这个命题我有一个十分美妙的证明,这里空白太小,写不下。」
4. 1670年,费玛 Fermat的儿子出版了载有Fermat註记的「丢番图的算数」
5. 在Fermat的其他註记中,隐含了对 n=4 的证明 => n=8, 12, 16, 20 ... 时无解
莱昂哈德?欧拉 Leonhard Euler 证明了 n=3 时无解 => n=6, 9, 12, 15 ... 时无解
3是质数,现在只要证明费玛最后定理对於所有的质数都成立
但 欧基里德 证明「存在无穷多个质数」
6. 1776年 索菲?热尔曼 针对 (2p+1)的质数,证明了 费玛最后定理 "大概" 无解
7. 1825年 古斯塔夫?勒瑞-狄利克雷 和 阿得利昂-玛利埃?勒让德 延伸热尔曼的证明,证明了 n=5 无解
8. 1839年 加布里尔?拉梅 Gabriel Lame 证明了 n=7 无解
9. 1847年 拉梅 与 奥古斯汀?路易斯?科西 Augusti Louis Cauchy 同时宣称已经证明了 费玛最后定理
最后是刘维尔宣读了 恩斯特?库默尔 Ernst Kummer 的信,说科西与拉梅的证明,都因为「虚数没有唯一因子分解性质」而失败
库默尔证明了 费玛最后定理的完整证明 是当时数学方法不可能实现的
10.1908年 保罗?沃尔夫斯凯尔 Paul Wolfskehl 补救了库默尔的证明
这表示 费玛最后定理的完整证明 尚未被解决
沃尔夫斯凯尔提供了 10万马克 给提供证明的人,期限是到2007年9月13日止
11.1900年8月8日 大卫?希尔伯特,提出数学上23个未解决的问题且相信这是迫切需要解决的重要问题
12.1931年 库特?哥德尔 不可判定性定理
第一不可判定性定理:如果公理集合论是相容的,那么存在既不能证明又不能否定的定理。
=> 完全性是不可能达到的
第二不可判定性定理:不存在能证明公理系统是相容的构造性过程。
=> 相容性永远不可能证明
13.1963年 保罗?科恩 Paul Cohen 发展了可以检验给定问题是不是不可判定的方法(只适用少数情形)
证明希尔伯特23个问题中,其中一个「连续统假设」问题是不可判定的,这对於费玛最后定理来说是一大打击
14.1940年 阿伦?图灵 Alan Turing 发明破译 Enigma编码 的反转机
从费玛最后定理的历史中可以发现,有许多研究成果,都是研究人员燃烧热情,试图提出「有趣」的命题,然后再尝试用逻辑验证。
费玛最后定理:xn+yn=zn 当 n>2 时,不存在整数解
1. 1963年 安德鲁?怀尔斯 Andrew Wiles被埃里克?坦普尔?贝尔 Eric Temple Bell 的一本书吸引,「最后问题 The Last Problem」,故事从这里开始。
2. 毕达哥拉斯 Pythagoras 定理,任一个直角三角形,斜边的平方=另外两边的平方和
x2+y2=z2
毕达哥拉斯三元组:毕氏定理的整数解
3. 费玛 Fermat 在研究丢番图 Diophantus 的「算数」第2卷的问题8时,在页边写下了註记
「不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;或者,总的来说,不可能将一个高於2次幂,写成两个同样次幂的和。」
「对这个命题我有一个十分美妙的证明,这里空白太小,写不下。」
4. 1670年,费玛 Fermat的儿子出版了载有Fermat註记的「丢番图的算数」
5. 在Fermat的其他註记中,隐含了对 n=4 的证明 => n=8, 12, 16, 20 ... 时无解
莱昂哈德?欧拉 Leonhard Euler 证明了 n=3 时无解 => n=6, 9, 12, 15 ... 时无解
3是质数,现在只要证明费玛最后定理对於所有的质数都成立
但 欧基里德 证明「存在无穷多个质数」
6. 1776年 索菲?热尔曼 针对 (2p+1)的质数,证明了 费玛最后定理 "大概" 无解
7. 1825年 古斯塔夫?勒瑞-狄利克雷 和 阿得利昂-玛利埃?勒让德 延伸热尔曼的证明,证明了 n=5 无解
8. 1839年 加布里尔?拉梅 Gabriel Lame 证明了 n=7 无解
9. 1847年 拉梅 与 奥古斯汀?路易斯?科西 Augusti Louis Cauchy 同时宣称已经证明了 费玛最后定理
最后是刘维尔宣读了 恩斯特?库默尔 Ernst Kummer 的信,说科西与拉梅的证明,都因为「虚数没有唯一因子分解性质」而失败
库默尔证明了 费玛最后定理的完整证明 是当时数学方法不可能实现的
10.1908年 保罗?沃尔夫斯凯尔 Paul Wolfskehl 补救了库默尔的证明
这表示 费玛最后定理的完整证明 尚未被解决
沃尔夫斯凯尔提供了 10万马克 给提供证明的人,期限是到2007年9月13日止
11.1900年8月8日 大卫?希尔伯特,提出数学上23个未解决的问题且相信这是迫切需要解决的重要问题
12.1931年 库特?哥德尔 不可判定性定理
第一不可判定性定理:如果公理集合论是相容的,那么存在既不能证明又不能否定的定理。
=> 完全性是不可能达到的
第二不可判定性定理:不存在能证明公理系统是相容的构造性过程。
=> 相容性永远不可能证明
13.1963年 保罗?科恩 Paul Cohen 发展了可以检验给定问题是不是不可判定的方法(只适用少数情形)
证明希尔伯特23个问题中,其中一个「连续统假设」问题是不可判定的,这对於费玛最后定理来说是一大打击
14.1940年 阿伦?图灵 Alan Turing 发明破译 Enigma编码 的反转机
我要评论
登录后参与评论
淡定
实在不是一般人能做到的事情。
回复
举报
2020年11月22日
keppel
有Wiles的热情和坚持是一种多大的幸福!
回复
举报
2020年11月22日
丽拉先生
干货很多,很好玩。
回复
举报
2020年11月22日